A Strong Hot Spot Theorem

David H. Bailey and Daniel J. Rudolph 2 May 2003

In [3] Bailey and Richard Crandall established normality base b for the class of constants

$$\alpha_{b,c} = \sum_{k=1}^{\infty} \frac{1}{c^k b^{c^k}},\tag{1}$$

where the integer b > 1 and c is odd and co-prime to b, as well as some generalizations of this class. The proof given in [3] is rather difficult and relies on several not-well-known results, including one by Korobov on the properties of certain pseudo-random sequences. Recently it has been shown that normality can be established much more easily, as a consequence of what may be called the "hot spot" theorem [1]. Here we state and prove a strong form of the "hot spot" theorem. A weaker result is given in [5, pg. 77], and is proven by an ergodic theory argument in [2].

In the following, $\{\cdot\}$ denotes fractional part as before, and $\#[\cdot]$ denotes count. μ and ν denote probability measures on U (the unit interval mod 1). A-B denotes the set of $x \in A$ and $x \notin B$, and $A\Delta B = (A-B) \cup (B-A)$. The notation a.e. $x[\mu]$ means for all $x \in U$ except for a set Q with $\mu(Q) = 0$. A Vitali covering of a measurable set $A \subset U$ is a collection of open intervals with the property that every $x \in A$ is contained in infinitely many, arbitrarily small intervals in the collection. The measure ν is absolutely continuous with respect to μ if $\nu(A) = 0$ whenever $\mu(A) = 0$. The map $T: U \to U$ is said to be measure-preserving with respect to μ if $\mu(T^{-1}A) = \mu(A)$ for every μ -measurable set A, and ergodic with respect to μ if $T^{-1}A = A$ implies $\mu(A) = 0$ or 1.

Given a real constant α in [0,1), we define here a base-b hot spot to be some $x \in [0,1)$ with the property that

$$\liminf_{h \to 0} \liminf_{n \to \infty} \frac{\#_{0 \le j < n} [\{b^j \alpha\} \in (x - h, x + h)]}{2hn} = \infty.$$
 (2)

Another way to state this condition is this: x is a base-b hot spot if given any M > 0, there is some $\delta_M > 0$ such that for all $h < \delta_M$ there is some $N_h > 0$ such that for all $n > N_h$, the condition $\#_{0 \le j \le n}[\{b^j \alpha\} \in (x - h, x + h)] > 2hnM$ holds.

What we shall establish below is that α is b-normal if and only if it has no base-b hot spots. We first present a few preliminary results.

Lemma 1 Vitali covering lemma. If a μ -measurable set $A \subset U$ has a Vitali covering, then given any $\epsilon > 0$, there is some finite disjoint subcollection A' with the property that $\mu(A\Delta A') < \epsilon$.

This result is proven in [6].

Lemma 2 Birkoff ergodic theorem. Let f(t) be an integrable function on [0,1), and let T be an ergodic transformation for μ . Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) = \int f \, d\mu \quad \text{for a.e. } x[\mu],$$
 (3)

This result is proved in [4, pg. 13, 20-29].

Lemma 3 Equivalence of absolutely continuous measures. Suppose that T is measure-preserving and ergodic with respect to both μ and ν , and further that ν is absolutely continuous with respect to μ . Then $\mu = \nu$.

Proof. Applying the ergodic theorem to $f(t) = I_A(t)$ (the indicator function of A),

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) = \int f(t) \, d\mu(t) = \mu(A) \quad \text{for a.e. } x[\mu]. \tag{4}$$

Since ν is absolutely continuous with respect to μ , the above holds a.e. $x[\nu]$ as well. Now since T preserves the measure ν , we can write, for n > 0,

$$\nu(A) = \int f(t) d\nu(t) = \frac{1}{n} \sum_{i=0}^{n-1} \int f(T^{i}x) d\nu(x)$$

$$= \int \frac{1}{n} \sum_{i=0}^{n-1} f(T^{i}x) d\nu(x) \to \int \mu(A) d\nu = \mu(A),$$
(5)

by the dominated convergence theorem. QED

Lemma 4 Absolute continuity of measures with finite derivatives. Suppose ν is a measure on U with the property that for a.e. $x[\nu]$,

$$\liminf_{h \to 0} \frac{\nu(x - h, x + h)}{2h} < \infty$$
(6)

Then ν is absolutely continuous with Lebesque measure.

Proof. Here μ denotes Lebesgue measure on U, and ν denotes any measure as defined in the hypothesis. Let A be any set with $\mu(A) = 0$, and let $\epsilon > 0$ be given. Then there exists a set Q with $\nu(Q) < \epsilon$ and $M \ge 1$ such that the LHS of (6), as a function of x, is bounded by M except on Q. Further, there exists some open set $A' \supset A$ with $\mu(A') < \epsilon/M$. Then for every $x \in (A' - Q)$ there exists an infinite sequence h_k , strictly decreasing to zero, such that $(x - h_1, x + h_1) \subset A'$ and $\nu(x - h_k, x + h_k)/(2h_k) \le M + \epsilon$ for $k \ge 1$. For $x \in (A' \cap Q)$, define $h_k = 2^{-m-k}$, where m is large enough that $(x - h_1, x + h_1) \subset A'$. Note that in either case all of these intervals are contained within A'. The collection of

these intervals is a Vitali covering of the set A', so by the Vitali covering lemma there is a finite disjoint subcollection $A'' \subset A'$ with $\nu(A' - A'') < \epsilon$. We can then write

$$\nu(A) \leq \nu(A') = \nu(A'') + \nu(A' - A'')
= \nu(A'' - Q) + \nu(A'' \cap Q) + \nu(A' - A'')
\leq (M + \epsilon)\mu(A'' - Q) + 2\epsilon \leq (M + \epsilon)\mu(A') + 2\epsilon
\leq (M + \epsilon)\epsilon/M + 2\epsilon < 4\epsilon,$$
(7)

which implies that $\nu(A) = 0$. QED

In the following, μ will denote Lebesgue measure on U, and, given a real constant $\alpha \in U$ and an integer $b \geq 2$, ν will denote the measure defined on an interval (c,d) as

$$\nu(c,d) = \liminf_{n \to \infty} \frac{\#_{0 \le j < n} [\{b^j \alpha\} \in (c,d)]}{n}$$
(8)

Lemma 5 Ergodicity of the digit-shift transformation. The digit-shift transformation $T(x) = \{bx\}$ is measure-preserving and ergodic with respect to both μ and ν .

Proof. T clearly preserves Lebesgue measure. Assume for convenience that b=2, and suppose that $A=T^{-1}(A)$. Then note that $x\in A$ if and only if $\{x+1/2\}\in A$. Thus if D=(0,1/2), then $\mu(A\cap D)=\mu(A)/2=\mu(A)\mu(D)$. A similar equality follows for any binary rational interval $(j2^m,k2^m)$, and thus for any finite disjoint union of such intervals. This collection of binary rational intervals is a Vitali covering of A. Thus given $\epsilon>0$, there is some finite disjoint union E with $\mu(A\Delta E)<\epsilon$ and $\mu(A\cap E)=\mu(A)\mu(E)$. We can then write

$$|\mu(A) - \mu^{2}(A)| < |\mu(A) - \mu(A)\mu(E)| + \epsilon = |\mu(A) - \mu(A \cap E)| + \epsilon$$

$$= |\mu(A) - (\mu(A) - \mu(A - E))| + \epsilon \le 2\epsilon$$
(9)

Thus $\mu(A) = \mu^2(A)$, so that $\mu(A) = 0$ or 1 as required. A similar argument applies to the measure ν as defined above. In the parlance of ergodic theory, T is "mixing" with respect to both μ and ν , which condition is well-known to imply ergodicity [4, pg. 12]. QED

Theorem 1 Hot spot theorem. The real constant α is b-normal if and only if it has no base-b hot spots.

Proof. If α has no base-b hot spots, then it follows immediately from Lemmas 3, 4, and 5, that for any interval $(c, d) \subset U$,

$$\lim_{n \to \infty} \inf \frac{\#_{0 \le j < n} [\{b^j \alpha\} \in (c, d)]}{n} = \mu(c, d) = d - c$$
(10)

This result also applies to $(0,c) \cup (d,1)$, which except for c,d and the point 0 is the complement of (c,d). We can then write

$$\limsup_{n \to \infty} \frac{\#_{0 \le j < n}[\{b^{j}\alpha\} \in (c, d)]}{n} = 1 - \liminf_{n \to \infty} \frac{\#_{0 \le j < n}[\{b^{j}\alpha\} \in (0, c) \cup (d, 1)]}{n}$$
$$= 1 - (c + (1 - d)) = d - c \tag{11}$$

Thus the liminf and the liminf are identical. Since this holds for any interval (c, d), it holds in particular for any interval whose endpoints are of the form j/b^m . Thus α is b-normal. QED

References

- [1] David H. Bailey, "A Hot-Spot Proof of Normality for the Alpha Constants," manuscript, 2003, available at the URL http://www.nersc.gov/~dhbailey/dhbpapers/alpha-normal.pdf
- [2] David H. Bailey and Daniel J. Rudolph, "An Ergodic Proof that Rational Times Normal is Normal," manuscript, 2002, available at the URL http://www.nersc.gov/~dhbailey/dhbpapers/ratxnormal.pdf
- [3] David H. Bailey and Richard E. Crandall, "Random Generators and Normal Numbers," Experimental Mathematics, vol. 11 (2002), pg. 527–546.
- [4] Patrick Billingsley, Ergodic Theory and Information, John Wiley, New York, 1965.
- [5] L. Kuipers and H. Niederreiter, *Uniform Distribution of Sequences*, Wiley-Interscience, New York, 1974.
- [6] Halsey L. Royden, Measure Theory, Addison-Wesley, 1968.